RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 116(158), Number 2(10), Pages 147–165 (Mi sm2449)

This article is cited in 4 papers

On the method of spherical harmonics for subharmonic functions

A. A. Kondratyuk


Abstract: A new criterion for completely regular growth of a subharmonic function in $\mathbf R^m$, $m\geqslant3$, is established in terms of spherical harmonics, and a sharp upper bound for the deficiency of such a function is found.
From the expansion of a subharmonic function on the unit sphere $S^m$ in a Fourier–Laplace series the author shows that the function belongs to the space $L^2(S^m)$ for $m=3,4$.
Bibliography: 23 titles.

UDC: 517.574+517.512

MSC: Primary 31B05, 32A22, 33A45; Secondary 32F05, 33A50, 42C10

Received: 12.12.1978


 English version:
Mathematics of the USSR-Sbornik, 1983, 44:2, 133–148

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026