RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 116(158), Number 1(9), Pages 111–119 (Mi sm2441)

Algebras of homological dimension 1

V. E. Govorov


Abstract: Augmented algebras over a field of homological dimension 1 ($\operatorname{hd}R=1$) are studied. It is proved that if $\operatorname{hd}R=1$, then the associated graded algebra $E(R)$ is free. If the filtration of the algebra $R$ defined by the powers of the augmentation ideal is separated, then the following conditions are equivalent: 1) $\operatorname{hd}R=1$, 2) $E(R)$ is free, 3) $\operatorname{w.g.dim}R=1$.
Some properties of groups of homological dimension 1 are presented.
It is proved that, in the category of graded algebras, the functor that produces homology groups carries a direct sum into a free product and a free product into a direct sum.
Bibliography: 6 titles.

UDC: 513.836

MSC: 16A60

Received: 07.12.1979


 English version:
Mathematics of the USSR-Sbornik, 1983, 44:1, 97–107

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026