RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 110(152), Number 1(9), Pages 13–34 (Mi sm2421)

This article is cited in 1 paper

On Fourier coefficients

P. L. Ul'yanov


Abstract: Let $\{\varphi_n\}$ be an orthonormal system of functions on the interval $[0,1]$, and let the function $f\in L^2(0, 1)$. We investigate the question of the convergence or divergence (depending on the smoothness of the function $f$) of series of the form
$$ \sum_{n = 1}^\infty|(f, \varphi_n)|^{\alpha_n}, $$
where $\alpha_n\uparrow2$ or $\alpha_n\to\alpha$ with $\alpha\in[0,2)$.
It is shown that in a certain sense, the assertions obtained are definitive for the Haar system.
Bibliography: 14 titles.

UDC: 517.5

MSC: Primary 42C15; Secondary 42C10

Received: 22.03.1979


 English version:
Mathematics of the USSR-Sbornik, 1981, 38:1, 11–29

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026