RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 115(157), Number 4(8), Pages 577–589 (Mi sm2417)

This article is cited in 3 papers

Coconvex approximation of functions of several variables by polynomials

A. S. Shvedov


Abstract: Let $M\subseteq\mathbf R^m$ be a compact convex body, and $O$ the center of gravity of $M$. For a convex function $f\colon M\to\mathbf R$ let
$$ \omega(f,\delta,M)=\sup_{\substack{x,y\in M\\|x-y|_M\leqslant\delta}}|f(x)-f(y)|\qquad(\delta\geqslant0), $$
where $|x|_M=\min\{\mu\geqslant0:x\in\mu(M-O)\}$, and let $M_1\subseteq\mathbf R^m$ be a convex body, $M\subseteq M_1$, and $\varkappa=\min\{\mu\geqslant1:M_1\subseteq\mu M\}$, $\mu M$ being a homothety of $M$ with respect to $O$. Then for $n\geqslant0$ there exists an algebraic polynomial
$$ p_n(x)=\sum_{i_1+\dots+i_m\leqslant n}a_{i_1,\dots,i_m}x^{i_1}_1\cdots x^{i_m}_m $$
that is convex on $M_1$ and such that
$$ \|f-p_n\|_{C(M)}\leqslant\varkappa A_m\omega\biggl(f,\frac1{n+1},M\biggr). $$

Bibliography: 6 titles.

UDC: 517.5

MSC: Primary 26B25, 41A10, 41A17; Secondary 26A15, 52A40

Received: 29.02.1980


 English version:
Mathematics of the USSR-Sbornik, 1982, 43:4, 515–526

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026