RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 115(157), Number 4(8), Pages 532–543 (Mi sm2414)

This article is cited in 6 papers

On a problem with free boundary for parabolic equations

A. M. Meirmanov


Abstract: This paper considers the problem of determining a solution of the parabolic equation
$$ L\theta\equiv D_t\theta-\sum^2_{i,j=1}D_i(a_{ij}(x,t,\theta)\cdot D_j\theta)+a(x,t,\theta,D\theta)=0 $$
and the boundary of the two-dimensional region in which a solution of the equation is sought in the case where on the free boundary the value of the desired function and the additional condition
$$ \sum^2_{i,j=1}a_{ij}D_i\theta\cdot D_j\theta=g(x,t) $$
are satisfied.
For this problem a theorem asserting the existence of a smooth solution on a small time interval is proved. If $L\theta=0$ is the heat equation, then the solution exists on any time interval, and it is unique.
Bibliography: 7 titles.

UDC: 517.946+536.42

MSC: Primary 35K20; Secondary 76S05

Received: 13.10.1980


 English version:
Mathematics of the USSR-Sbornik, 1982, 43:4, 473–484

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026