RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 109(151), Number 4(8), Pages 555–581 (Mi sm2401)

This article is cited in 4 papers

On asymptotic curves of entire functions of finite order

A. A. Gol'dberg, A. È. Eremenko


Abstract: For any $\rho$, $ 0\leqslant\rho\leqslant\infty$, there exists an entire function of order $\rho$ such that for any asymptotic curve $\Gamma$ on which $f\to\infty$ the relation $l(r,\Gamma)=O(r)$, $r\to\infty$, does not hold, where $l(r,\Gamma)$ is the length of that part of $\Gamma$ contained in the disc $\{z:|z|\leqslant r\}$. The same is true of asymptotic curves on which $f\to a\ne\infty$ under the natural restriction that $1/2\leqslant\rho\leqslant\infty$. This disproves a well-known conjecture of Hayman and Erdösh. Several closely related results are obtained.
Bibliography: 24 titles.

UDC: 517.535.4

MSC: 30D15

Received: 20.09.1977


 English version:
Mathematics of the USSR-Sbornik, 1980, 37:4, 509–533

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026