Abstract:
Let $X=(X_t, \mathscr F_t)$ be an optional submartingale of the class $(D)$. It is proved that there exist an optional martingale $m=(m_t, \mathscr F_t)$ and a strongly predictable process $A=(A_t, \mathscr F_t)$ such that the Doob decomposition $X_t=m_t+A_t$ is valid.
Bibliography: 10 titles.