RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 109(151), Number 2(6), Pages 188–202 (Mi sm2365)

This article is cited in 117 papers

Averaging of random operators

S. M. Kozlov


Abstract: For the equation with rapidly oscillating coefficients in a bounded domain $\mathscr O\subset\mathbf R^n$
$$ \sum_{i,j=1}^n\frac\partial{\partial x_i}a_{ij}\biggl(\frac x\varepsilon\biggr),\qquad u_\varepsilon(x)|_{\partial\mathscr O}=f_1(x), $$
where $(a_{ij}(y))$ form homogeneous random fields, an averaged equation of the form
$$ \sum_{i,j=1}^nq_{ij}\frac{\partial^2} {\partial x_i\partial x_j}u_0(x)=f(x),\qquad u_0(x)|_{\partial\mathscr O}=f_1(x), $$
is constructed with coefficients $q_{ij}$ which do not depend on $x$; various applications of this result are also obtained.
Bibliography: 22 titles.

UDC: 517.946

MSC: Primary 35R60; Secondary 35J25, 60G60

Received: 26.07.1978


 English version:
Mathematics of the USSR-Sbornik, 1980, 37:2, 167–180

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026