RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 114(156), Number 4, Pages 611–642 (Mi sm2359)

This article is cited in 7 papers

On the limit distribution of the number of cycles and the logarithm of the order of a class of permutations

A. I. Pavlov


Abstract: Let $S_n$ be the symmetric group of degree $n$ and let $S_n^{(k)}$ be the set of permutations $a\in S_n$ such that the equation $x^k=a$ has a solution $x\in S_n$. Consider the uniform probability distribution on the set $S_n^{(k)}$.
This article investigates the limit distributions on $S_n^{(k)}$, as $n\to\infty$ and for fixed $k\geqslant2$, of the random variables $\xi_s$, $\eta$, and $\zeta$, where $\xi_s$ is the number of cycles of length $s$, $\eta$ is the number of all cycles, and $\zeta$ is the logarithm of the order of a random permutation $a\in S_n^{(k)}$.
Bibliography: 5 titles.

UDC: 519.21

MSC: Primary 20P05, 60F05; Secondary 20B30

Received: 19.06.1980


 English version:
Mathematics of the USSR-Sbornik, 1982, 42:4, 539–567

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026