RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 109(151), Number 1(5), Pages 107–128 (Mi sm2358)

This article is cited in 25 papers

Free interpolation sets for Hölder classes

E. M. Dyn'kin


Abstract: Let $\mathbf D=\{z,|z|<1\}$, let $E$ be a closed subset of $\overline{\mathbf D}$ and let $0<s<1$. Let $A^s$ be the space of functions $f$ analytic in $\mathbf D$ and continuous in $\overline{\mathbf D}$ such that
\begin{equation} |f(z_1)-f(z_2)|\leqslant\operatorname{const}\cdot|z_1-z_2|^s \tag{\ast} \end{equation}
everywhere in $\overline{\mathbf D}$. Let $\Lambda^s(E)$ be the space of functions $f$ continuous on $E$ that satisfy ($\ast$) everywhere on $E$. It is clear that $A^s|_E\subset\Lambda^s(E)$. The set $E$ is said to be $A^s$-interpolating if $A^s|_E=\Lambda^s(E)$.
The article gives necessary and sufficient conditions for a set $E$ to be interpolating (independently of $s$). Similar results are obtained for $s>1$ and for classes of functions with derivatives in $H^p$.
Bibliography: 18 titles.

UDC: 517.53

MSC: Primary 30E05; Secondary 30D60

Received: 30.06.1978


 English version:
Mathematics of the USSR-Sbornik, 1980, 37:1, 97–117

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026