RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2007 Volume 198, Number 6, Pages 139–158 (Mi sm2345)

This article is cited in 6 papers

Calculation of the variance in a problem in the theory of continued fractions

A. V. Ustinov

Institute for Applied Mathematics, Khabarovsk Division, Far-Eastern Branch of the Russian Academy of Sciences

Abstract: We study the random variable $N(\alpha,R)=\#\{j\geqslant1:Q_j(\alpha)\leqslant R\}$, where $\alpha\in[0;1)$ and $P_j(\alpha)/Q_j(\alpha)$ is the $j$th convergent of the continued fraction expansion of the number $\alpha=[0;t_1,t_2,\dots]$. For the mean value
$$ N(R)=\int_0^1N(\alpha,R)\,d\alpha $$
and variance
$$ D(R)=\int_0^1\bigl(N(\alpha,R)-N(R)\bigr)^2\,d\alpha $$
of the random variable $N(\alpha,R)$, we prove the asymptotic formulae with two significant terms
$$ N(R)=N_1\log R+N_0+O(R^{-1+\varepsilon}), \quad D(R)=D_1\log R+D_0+O(R^{-1/3+\varepsilon}). $$

Bibliography: 13 titles.

UDC: 511.336

MSC: Primary 11K50; Secondary 11A55

Received: 01.08.2006

DOI: 10.4213/sm2345


 English version:
Sbornik: Mathematics, 2007, 198:6, 887–907

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026