RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1997 Volume 188, Number 5, Pages 113–130 (Mi sm233)

This article is cited in 10 papers

Approximations on compact symmetric spaces of rank 1

S. S. Platonov

Petrozavodsk State University

Abstract: On an arbitrary Riemannian symmetric space $M$ of rank 1 the Nikol'skii classes $H_p^r(M)$ are defined by considering differences along geodesics. These spaces are described in terms of the best approximations by polynomials in spherical harmonics on $M$, that is, by linear combinations of the eigenfunctions of the Laplace–Beltrami operator on $M$. The results of Nikol'skii and Lizorkin on the approximation of functions on the sphere $S^n$ are generalized.

UDC: 517.518

MSC: Primary 41A30; Secondary 53C35

Received: 26.11.1993

DOI: 10.4213/sm233


 English version:
Sbornik: Mathematics, 1997, 188:5, 753–769

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026