RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 108(150), Number 3, Pages 418–432 (Mi sm2318)

This article is cited in 6 papers

Uniform rational approximations of functions of class $V_r$

P. P. Petrushev


Abstract: Let $V_r$ denote the set of functions $f$, defined on a finite interval $[a,b]$, for which $f^{(r-1)}$ is absolutely continuous on $[a,b]$ and is a primitive of a function of bounded variation; let $R_n(f)$ denote the best uniform approximation of $f$ by rational functions of order $n$. It is shown that $R_n(f)=o(n^{-r-1})$ for every $f\in V_r$ $(r\geqslant1)$, and that this estimate is of best possible order for the class $V_r$.
Bibliography: 13 titles.

UDC: 517.51

MSC: Primary 41A20, 41A25; Secondary 41A15

Received: 04.09.1978


 English version:
Mathematics of the USSR-Sbornik, 1980, 36:3, 389–403

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026