RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1981 Volume 114(156), Number 2, Pages 179–225 (Mi sm2317)

This article is cited in 4 papers

On the geometry of meromorphic functions

G. A. Barsegyan


Abstract: This paper establishes various propositions characterizing the geometric behavior of meromorphic functions $w(z)$ in $|z|<\infty$. “Distortion” theorems for these functions form a basis for the arguments. Namely, a finite number of nice curves $\Gamma_\nu$, $\nu=1,2,\dots,q$, in the $w$-plane are considered (in particular, $\Gamma_1$ may be a straight line) and information is obtained about the lengths $L(r, \Gamma_\nu)$ of the sets $w^{-1}(\Gamma_\nu)\cap\{z:|z|\le r\}$, $\nu=1,2,\dots,q$. Qualitatively, the main result is as follows: on some sequence $r_n\to\infty$
\begin{equation} \sum^q_{\nu=1}L(r, \Gamma_\nu)\le KrA(r), \tag{1} \end{equation}
where $K$ is an absolute constant, and $A(r)$ is the Ahlfors characteristic.
Bibliography: 29 titles.

UDC: 517.53

MSC: Primary 30D30, 30D35; Secondary 30C99, 30F99

Received: 01.08.1979


 English version:
Mathematics of the USSR-Sbornik, 1982, 42:2, 155–196

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026