RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1979 Volume 108(150), Number 2, Pages 212–218 (Mi sm2287)

This article is cited in 5 papers

A generalization of the Borsuk–Ulam theorem

A. Yu. Volovikov


Abstract: Let $X$ be a connected paracompact Hausdorff space, acted on without fixed points by a cyclic group $\pi=\mathbf Z_p$ of prime order $p$. For any continuous mapping $f\colon X\to M$ let
$$ \ A(f)=\{x\in X\mid f(x)=f(Tx)=\cdots=f(T^{p-1}x)\}, $$
where $T$ is a generator of $\pi$.
Suppose $\Breve H^i(X;\mathbf Z_p)=0$ for $0<i<n$, and $M$ is a compact $\mathbf Z_p$-orientable topological manifold of dimension $m$. If the mapping $f^*\colon\Breve H^n(M;\mathbf Z_p)\to\Breve H^n(X;\mathbf Z_p)$ has zero image, then the cohomological dimension over $ \mathbf Z_p$ of the set $A(f)$ is at least $n-m(p-1)$.
Furthermore, if $X$ is a generalized manifold of dimension $N$, and $n=m(p-1)$, then $\dim A(f)\geqslant N-m(p-1)$.
Bibliography: 8 titles.

UDC: 513.836

MSC: Primary 55C20; Secondary 57A15, 57B10

Received: 07.03.1978


 English version:
Mathematics of the USSR-Sbornik, 1980, 36:2, 195–202

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026