RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1983 Volume 122(164), Number 2(10), Pages 142–156 (Mi sm2281)

This article is cited in 6 papers

Volume and fundamental group of a manifold of nonpositive curvature

S. V. Buyalo


Abstract: The relationship between the volume $v(M)$ and the fundamental group $\pi_1(M)$ of a closed manifold $M$ of nonpositive curvature $K_\sigma$, $-1\leqslant K_\sigma\leqslant0$, is studied. The main result asserts that if $\pi_1(M)$ does not contain nontrivial normal abelian subgroups, then
$$ v(M)\geqslant\beta_ne^{-\alpha_nD(M)}, $$
where $D(M)$ is the diameter of $M$ and $\alpha_n$$\beta_n>0$ depend only on the dimension of $M$. From this it follows, in particular, that for given $n\geqslant2$ and $C>0$ there exist only finitely many pairwise nonhomeomorphic $n$-dimensional closed $M$ with $-1\leqslant K_\sigma\leqslant0$ and $D(M)\leqslant C$.
Figures: 1.
Bibliography: 9 titles.

UDC: 512.54

MSC: Primary 53C20; Secondary 57R19

Received: 12.03.1983


 English version:
Mathematics of the USSR-Sbornik, 1985, 50:1, 137–150

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026