RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1983 Volume 122(164), Number 1(9), Pages 97–125 (Mi sm2278)

This article is cited in 6 papers

Central polynomials in irreducible representations of a semisimple Lie algebra

Yu. P. Razmyslov


Abstract: A central multilinear polynomial is constructed for every reductive finite-dimensional Lie algebra $\mathfrak G$ over an algebraically closed field $K$ of characteristic zero, and almost every faithful irreducible $K$-representation of $\mathfrak G$ in a vector space $V$. The central polynomial is of the form $f(z_{11},\dots,z_{1m},z_{21},\dots,z_{2m},\dots,z_{k1},\dots,z_{km})$, where $m=\dim_k\mathfrak G$ and $f$ is skew-symmetric with respect to the variables of each set $\{z_{i1},\dots,z_{im}\}$ ($ i=1,\dots,k$). The dimension of the vector space $V$ need not be finite.
This result implies that, for the Lie algebra $W_n$ of all regular tangent vector fields of an $n$-dimensional affine algebraic variety, one can construct an associative multilinear polynomial $f$ such that the map
$$ f\circ\mathrm{ad}: W_n\otimes\dots\otimes W_n\to\operatorname{End}_KW_n $$
is a map onto the center of the algebra $\operatorname{End}_{\mathscr E}W_n$, which is isomorphic to the algebra $\mathscr E$ of all regular functions of this variety.
Bibliography: 10 titles.

UDC: 519.4

MSC: 17B20, 17B10

Received: 17.09.1982


 English version:
Mathematics of the USSR-Sbornik, 1985, 50:1, 99–124

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026