RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1983 Volume 122(164), Number 1(9), Pages 31–40 (Mi sm2271)

This article is cited in 24 papers

Finitely generated special Jordan and alternative $PI$-algebras

I. P. Shestakov


Abstract: The author explores the question of whether identities related to special Jordan and alternative $PI$-algebras exist in associative algebras. It is proved that if $A$ is a finitely generated special Jordan (alternative) $PI$-algebra, then the universal associative enveloping algebra $S(A)$ (respectively, the universal algebra $\mathscr R(A)$ for right alternative representations) of algebra $A$ is also a $PI$-algebra. As a corollary it is proved that the upper nilradical of a finitely generated special Jordan or alternative $PI$-algebra over a Noetherian ring is nilpotent. A similar result holds for the Zhevlakov radical of a finitely generated free alternative algebra. In addition, a criterion is obtained for local associator nilpotence of an alternative algebra.
Bibliography: 19 titles.

UDC: 519.48

MSC: Primary 17C25; Secondary 17C10, 16A68

Received: 18.06.1982


 English version:
Mathematics of the USSR-Sbornik, 1985, 50:1, 31–40

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026