RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1982 Volume 118(160), Number 2(6), Pages 262–279 (Mi sm2252)

This article is cited in 9 papers

Scattering subspaces and asymptotic completeness for the time-dependent Schrödinger equation

D. R. Yafaev


Abstract: The Schrödinger equation $i\partial u/\partial t=H(t)u$ with a time-dependent Hamiltonian $H(t)=-\Delta+q(x,t)$ is considered in the space $L_2(\mathbf R^m)$. It is assumed that $q=\overline q$, $|q(x,t)|\leqslant c(1+|x|)^{-a}$, $a>2$, and $m\geqslant5$; $H_0=-\Delta$. It is shown that each solution of the Schrödinger equation which exits any compact subset of configuration space must have free asymptotics. More precisely, if for any $\rho$ there is a sequence $~t_n\to\pm\infty$ such that $\int_{|x|< \rho}|u(x,t_n)|^2\,dx\to0$, then, for some $f_\pm$, $\|u(t)-\exp(-iH_0t)f_\pm\|\to 0$, $t\to\pm\infty$. This provides an effective description of the ranges of the wave operators relating the problems with the free Hamiltonian $H_0$ and the complete Hamiltonian $H(t)$. Examples show that the conditions imposed are best possible. The case of functions $q(x,t)$ periodic in $t$ is treated separately; in this case the description of the ranges of the wave operators can be given in spectral terms for $a>1$ and any $m$. More general differential operators are also considered.
Bibliography: 14 titles.

UDC: 517.948.35

MSC: 35J10, 35P25, 35B40

Received: 08.06.1981


 English version:
Mathematics of the USSR-Sbornik, 1983, 46:2, 267–283

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026