RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1997 Volume 188, Number 5, Pages 21–32 (Mi sm224)

This article is cited in 22 papers

Structure of the spectrum of the Schrodinger operator with magnetic field in a strip and infinite-gap potentials

V. A. Geiler, M. M. Senatorov

Mordovian State University

Abstract: The Sturm–Liouville operator $H=-d^2/dx^2+V(x+p)$ on an interval $[a,b]$ with zero boundary conditions is considered; here $V$ is a strictly convex function of class $C^2$ on the real line $\mathbb R$ and $p$ is a numerical parameter. The dependence of the eigenvalues of $H$ on $p$ is studied. The spectral analysis of the Schrödinger operator with magnetic field in a strip with Dirichlet boundary conditions on the boundary of the strip reduces to this problem. As a consequence of the main result the following theorem is obtained. Let $V_1$ be the restriction of $V$ to the interval $[a,b)$ and let $u$ be the periodic extension of $V_1$ on the entire axis (with period $b-a$). Then all the gaps in the spectrum of the Schrödinger operator $-d^2/dx^2+u(x)$ are non-trivial.

UDC: 517.983

MSC: 35P20, 35Q55

Received: 22.04.1996

DOI: 10.4213/sm224


 English version:
Sbornik: Mathematics, 1997, 188:5, 657–669

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026