RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1982 Volume 117(159), Number 3, Pages 379–396 (Mi sm2214)

This article is cited in 4 papers

Linear forms in the values of $G$-functions, and Diophantine equations

E. M. Matveev


Abstract: Using a rather general theorem on $G$-functions proved in this paper, the author establishes the existence of an effective upper bound for the solutions of certain Diophantine equations, such as those of the form
$$ a_1x^g_1-a_2x^g_2=p_1^{z_1}\cdots p_k^{z_k}G(x_1,x_2), $$
where $a_1,a_2$ and $p_1,\dots,p_k$ are natural numbers and $G(x_1, x_2)$ is a polynomial of small degree. The upper bound has the form
$$ \max(|x_1|,|x_2|)\leqslant(\xi H(G))^{1/(g-\gamma-\operatorname{deg}G)}, $$
where $\gamma$ depends on $a_1,a_2$ and $p_1,\dots,p_k$ and can be written out explicitly, and $\xi$ is an effective positive constant.
Bibliography: 17 titles.

UDC: 511

MSC: Primary 10F35, 10F37; Secondary 33A35

Received: 03.03.1981


 English version:
Mathematics of the USSR-Sbornik, 1983, 45:3, 379–396

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026