RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 128(170), Number 4(12), Pages 492–515 (Mi sm2172)

This article is cited in 12 papers

Sharp order estimates for best rational approximations in classes of functions representable as convolutions

V. N. Rusak


Abstract: Let $h(t)$ be a function of bounded variation, $[\operatorname{Var}h(t)]_0^{2\pi}\leqslant1$, and $D_r(t)$ the Weyl kernel of order $r$, i.e. $D_r(t)=\sum_{k=1}^\infty k^{-r}\cos\bigl(kt-\frac {r\pi}{2}\bigr)$, $r>0$. Denote by $W_{2\pi}^r V$ and $W_{2\pi}^r V_0$ the classes of functions represented by the corresponding formulas
$$ f(k)=\frac{a_0}2+\frac1\pi\int_0^{2\pi}D_r(x-t)h(t)\,dt, \qquad f(x)=\frac1\pi\int_0^{2\pi}D_{r+1}(x-t)\,dh(t). $$
The conjugate classes of functions $\widetilde{W_{2\pi}^r V}$ and $\widetilde{W_{2\pi}^r V_0}$ are also considered; they are convolutions of conjugate Weyl kernels with functions of bounded variation.
The following main result is proved:
$$ \sup_{f\in K^r}\mathbf R_n^T(f)\asymp\frac1{n^{r+1}}, $$
where $\mathbf R_n^T(f)$ is the best uniform approximation by trigonometric rational functions of order at most $n$, and $K^r$ is one of the classes
$$ W_{2\pi}^r V,\qquad W_{2\pi}^r V_0,\qquad\widetilde{W_{2\pi}^r V},\qquad\widetilde{W_{2\pi}^r V_0}. $$

Bibliography: 13 titles.

UDC: 517.51+517.53

MSC: 41A20, 42A10, 41A25

Received: 21.09.1984


 English version:
Mathematics of the USSR-Sbornik, 1987, 56:2, 491–513

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026