RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 128(170), Number 3(11), Pages 383–402 (Mi sm2166)

This article is cited in 8 papers

On the representation of finite rings by matrices over commutative rings

Yu. N. Mal'tsev


Abstract: The author constructs an infinite series of finite rings $B$, $B^{(m)}$, $m\geqslant2$, which are not embeddable in rings of matrices over commutative rings, and describes their bases of identities and critical rings of the varieties they generate. He shows that finite rings from the ring varieties $\operatorname{var}B$, $\operatorname{var}B^{(m)}$, $m\geqslant2$, $m=(p-1)t+1$, are either representable by matrices over commutative rings or generate the respective varieties. Under a supplementary restriction on a variety $\mathfrak M$ with exponent $p^k$ it is shown that every finite ring from $\mathfrak M$ is representable by matrices over a commutative ring if and only if $\mathfrak M$ does not contain any of the rings $B$, $B^{(m)}$, $m\geqslant2$.
Bibliography: 14 titles.

UDC: 512

MSC: Primary 16A44; Secondary 16A42, 16A44

Received: 23.07.1984


 English version:
Mathematics of the USSR-Sbornik, 1987, 56:2, 379–402

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026