RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 128(170), Number 3(11), Pages 321–338 (Mi sm2162)

This article is cited in 12 papers

Bases of admissible rules of the modal system Grz and of intuitionistic logic

V. V. Rybakov


Abstract: It is proved that the free pseudoboolean algebra $F_\omega(\mathrm{Int})$ and the free topoboolean algebra $F_\omega(\mathrm{Grz})$ do not have bases of quasi-identities in a finite number of variables. A corollary is that the intuitionistic propositional logic $\mathrm{Int}$ and the modal system $\mathrm{Grz}$ do not have finite bases of admissible rules. Infinite recursive bases of quasi-identities are found for $F_\omega(\mathrm{Int})$ and $F_\omega(\mathrm{Grz})$. This implies that the problem of admissibility of rules in the logics $\mathrm{Grz}$ and $\mathrm{Int}$ is algorithmically decidable.
Bibligraphy: 14 titles.

UDC: 510.6+512

MSC: Primary 03B45; Secondary 03F55

Received: 07.06.1984


 English version:
Mathematics of the USSR-Sbornik, 1987, 56:2, 311–331

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026