RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1983 Volume 121(163), Number 1(5), Pages 60–71 (Mi sm2154)

This article is cited in 2 papers

Asymptotic behavior of the spectrum of pseudodifferential operators with small parameters

D. G. Vasil'ev


Abstract: The eigenvalue problem
$$ L(\varepsilon,h)f\equiv\varepsilon^{m_0}A_0f+\sum^l_{j=1}h_j\varepsilon^{m_j}A_jf=\lambda f. $$
is considered on an $n$-dimensional compact manifold without boundary. Here the $A_k$, $k=0,1,\dots,l$, are symmetric scalar classical pseudodifferential operators of orders $m_k$ with leading symbols $a_k(x,\xi)$, $m_0>0$, $m_0\geqslant m_k\geqslant0$, $a_0(x,\xi)>0$ and $\varepsilon$, $h_j$, $j=1,2,\dots,l$, are small real parameters with $\varepsilon>0$ and $h_j=O(\varepsilon^{1/p})$, where $p$ is a positive integer. The distribution functions $n(\lambda,L(\varepsilon,h))$ of the eigenvalues of the operator $L(\varepsilon,h)$ are studied. Let $[\Lambda_1,\Lambda_2]$ be a fixed interval of the positive half-line ($\Lambda_1>0$). An asymptotic formula with optimal relative error $O(\varepsilon)$ is obtained for $n(\lambda,L(\varepsilon,h))$ as $\varepsilon\to0$ when $\lambda\in[\Lambda_1,\Lambda_2]$.
Bibliography: 10 titles.

UDC: 517.2

MSC: Primary 41A60, 58G15, 58G25; Secondary 35S99, 47G05

Received: 03.02.1982


 English version:
Mathematics of the USSR-Sbornik, 1984, 49:1, 61–72

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026