RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1983 Volume 120(162), Number 4, Pages 546–555 (Mi sm2147)

The method of matching asymptotic expansions for the solution of a hyperbolic equation with a small parameter

T. N. Nesterova


Abstract: The author considers an initial-boundary value problem for the hyperbolic equation
$$ \varepsilon^2(u_{tt}-u_{xx})+a(x,t)u_t=f(x,t) $$
in a rectangle (here $\varepsilon$ is a small parameter and $a(x,t)\geqslant a_0>0$). It is assumed that the initial and boundary values of the function $u_\varepsilon(x,t)$ coincide at the lower corners of the rectangle. A complete asymptotic expansion of the solution in powers of $\varepsilon$ is constructed everywhere in the rectangle.
Bibliography: 5 titles.

UDC: 517.946

MSC: 35L20, 35B20

Received: 13.04.1982


 English version:
Mathematics of the USSR-Sbornik, 1984, 48:2, 541–550

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026