RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 128(170), Number 2(10), Pages 194–215 (Mi sm2123)

This article is cited in 20 papers

Trace identities and central polynomials in the matrix superalgebras $M_{n,k}$

Yu. P. Razmyslov


Abstract: A complete description is given of trace identities for matrix superalgebras $M_{n,k}=\biggl\{\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}\biggr\}$, where $a_{11}$ and $a_{22}$ are square matrices of orders $n$ and $k$ respectively over the even elements of a Grassmann algebra $G$ with countably many generators, while $a_{12}$ and $a_{21}$ are $n\times k$ and $k\times n$ rectangular matrices respectively over the odd elements of $G$. A relation is found between multilinear trace identities of degree $ l$ in the algebra $M_{n,k}$ and irreducible representations of a symmetric group of order $(l+1)!\,$. It is proved that over a field of characteristic zero all trace identities of $M_{n,k}$ follow from identities of degree $nk+n+k$ that hold in that algebra. For every algebra $M_{n,k}$ over a field of arbitrary characteristic a central polynomial is given explicitly.
Bibliography: 7 titles.

UDC: 512

MSC: 16A38

Received: 15.02.1984


 English version:
Mathematics of the USSR-Sbornik, 1987, 56:1, 187–206

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026