RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1983 Volume 120(162), Number 2, Pages 180–189 (Mi sm2114)

This article is cited in 111 papers

Norms of random matrices and widths of finite-dimensional sets

E. D. Gluskin


Abstract: Precise orders are given for the Kolmogorov and linear widths of the unit ball of the space $l_p^m$ in the metric of $l_q^m$ for $q<\infty$. The determination of the upper estimates is based on approximation by random objects. This method goes back to Kashin (Izv. Akad. Nauk SSSR, Ser. Mat., 1977, vol. 41, p. 334–351). The corresponding lower estimates were obtained in a previous article of the author (Vestn. Leningr. Univ., 1981, № 13, p. 5–10).
Bibliography: 12 titles.

UDC: 517.98

MSC: Primary 15A52, 46B20; Secondary 26A12, 41A99, 52A20

Received: 30.04.1982


 English version:
Mathematics of the USSR-Sbornik, 1984, 48:1, 173–182

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026