RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1984 Volume 124(166), Number 4(8), Pages 568–570 (Mi sm2067)

This article is cited in 6 papers

On a theorem of M. V. Keldysh concerning pointwise convergence of a sequence of polynomials

S. V. Kolesnikov


Abstract: This article contains a proof of the following fact: for any bounded function $f(z)$, $|z|=1$, of the first Baire class such that $\int_{|z|=1}f(z)z^n\,dz=0$ for $n=0,1,\dots$, there exists a uniformly bounded sequence of polynomials on $|z|=1$ converging pointwise to $f(z)$.
Bibliography: 2 titles.

UDC: 517.5+517.98

MSC: 41A10, 30B60, 30C10

Received: 15.02.1984


 English version:
Mathematics of the USSR-Sbornik, 1985, 52:2, 553–555

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026