RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1984 Volume 123(165), Number 3, Pages 407–421 (Mi sm2028)

This article is cited in 64 papers

Graphs with polynomial growth

V. I. Trofimov


Abstract: Let $\Gamma$ be a connected locally finite vertex-symmetric graph, $R(n)$ the number of vertices of $\Gamma$ at a distance not more than $n$ from some fixed vertex. The equivalence of the following assertions is proved: (a) $R(n)$ is bounded above by a polynomial; (b) there is an imprimitivity system $\sigma$ with finite blocks of $\operatorname{Aut}\Gamma$ on the set of vertices of $\Gamma$ such that $\operatorname{Aut}\Gamma/\sigma$ is finitely generated nilpotent-by-finite and the stabilizer of a vertex of $\Gamma/\sigma$ in $\operatorname{Aut}\Gamma/\sigma$ is finite. Thus, in a certain sense, a description is obtained of the connected locally finite vertex-symmetric graphs with polynomial growth.
Bibliography: 8 titles.

UDC: 512.544.42+519.17

MSC: 05C25

Received: 19.01.1983


 English version:
Mathematics of the USSR-Sbornik, 1985, 51:2, 405–417

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026