RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 127(169), Number 4(8), Pages 519–537 (Mi sm2012)

On the divergence of Lagrange interpolation processes on sets of the second category

Al. A. Privalov


Abstract: If $\omega$ is a real nondecreasing semiadditive function, continuous on $[0;1]$, such that $\omega(0)=0$ and $\varlimsup_{n\to\infty}\omega\bigl(\frac1n\bigr)\ln n>0$, then for every matrix of interpolation knots on $[0;1]$ there are a function $f$, continuous on $[0;1]$, whose modulus of continuity $\omega(f,\delta)=O\{\omega(\delta)\}$, and a set $\mathscr E$ of second category on $[0;1]$ such that the Lagrange interpolation process for $f$ diverges everywhere on $\mathscr E$.
Bibliography: 10 titles.

UDC: 517.51

MSC: 41A05

Received: 23.01.1984


 English version:
Mathematics of the USSR-Sbornik, 1986, 55:2, 511–528

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026