RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1997 Volume 188, Number 2, Pages 57–66 (Mi sm201)

This article is cited in 9 papers

On translates of convex measures

E. P. Krugova


Abstract: The following alternative is proved for a convex Radon measure $\mu$, on a locally convex space $X$ and for an arbitrary direction $h\in X$: either $\mu$ is differentiable in the direction $h$ in the sense of Skorokhod and $\|\mu _h-\mu \|\geqslant 2-2e^{-\frac 12\|d_h\mu \|}$, or $\mu$ and $\mu _{th}$ are mutually singular for all $t\in \mathbb R\setminus \{0\}$.

UDC: 517.987

MSC: 28C15, 28C20

Received: 27.02.1996

DOI: 10.4213/sm201


 English version:
Sbornik: Mathematics, 1997, 188:2, 227–236

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026