RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1997 Volume 188, Number 2, Pages 25–56 (Mi sm200)

This article is cited in 3 papers

The fundamental principle for invariant subspaces of analytic functions. I

I. F. Krasichkov-Ternovskii

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences

Abstract: Let $W$ be a differentiation-invariant subspace of the topological product $H=H(G_1)\times \dots \times H(G_q)$ of the spaces of analytic functions in domains $G_1,\dots ,G_q$ in $\mathbb C$, respectively. Under certain assumptions there exists a sequence of complex numbers $\{\lambda _i\}$, $i=1,2,\dots$, and projection operators $p_i\colon W \to W(\lambda _i)$ onto the root subspaces $W(\lambda _i)\subset W$ corresponding to the eigenvalues $\lambda _i$ of the differentiation operator. This enables one to associate with each element $f\in W$ the formal series $f\backsim \sum p_i(f)$. The fundamental principle is the phenomenon of the convergence of this series to the corresponding element $f$ for each $f$ in $W$. The existence of the projections $p_i$ depends on a particular property of the annihilator submodule of $W$: its stability with respect to division by binomials $z-\lambda$. Stability questions arising in establishing the fundamental principle are considered.

UDC: 517.5

MSC: 46E10, 30B99

Received: 23.01.1996

DOI: 10.4213/sm200


 English version:
Sbornik: Mathematics, 1997, 188:2, 195–226

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026