RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1984 Volume 123(165), Number 2, Pages 195–211 (Mi sm1993)

This article is cited in 7 papers

A complete asymptotic expansion of the spectral function of second order elliptic operators in $\mathbf R^n$

B. R. Vainberg


Abstract: A complete asymptotic expansion as $\lambda\to\infty$, $|x|,|y|\leqslant b<\infty$ ($b$ arbitrary) is obtained for the spectral function $e_\lambda(x,y)$ of second order elliptic operators in $\mathbf R^n$ satisfying the condition of not being “trapped”, i.e. the requirement that the bicharacteristics issuing from any point extend to infinity.
Bibliography: 17 titles.

UDC: 517.95

MSC: Primary 35P05, 47F05, 41A60; Secondary 35J15

Received: 20.04.1983


 English version:
Mathematics of the USSR-Sbornik, 1985, 51:1, 191–206

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026