RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1985 Volume 126(168), Number 2, Pages 172–193 (Mi sm1933)

This article is cited in 3 papers

Markov intervention of chance, and limit theorems

V. M. Shurenkov


Abstract: This article concerns properties of random processes $\mathfrak z_t$ ($t\geqslant0$) for which a Markov intervention time exists, i.e., a nonnegative random variable $\mathfrak w$ such that for a particular value of $\mathfrak z_{\mathfrak w}$ the collections $\{\mathfrak z_t\ (0\leqslant t<\mathfrak w)\}$ and $\{\mathfrak z_{t+\mathfrak w}\ (t\geqslant0)\}$ are conditionally independent, and the conditional distributions of $\{\mathfrak z_{t+\mathfrak w}\ (t\geqslant0)\}$ (under the condition $\mathfrak z_{\mathfrak w}=x$) and $\{\mathfrak z_t\ (t\geqslant0)\}$ (under the condition $\mathfrak z_0=x$) coincide. Such random processes generalize Markov and semi-Markov processes.
Bibliography: 10 titles.

UDC: 519.2

MSC: Primary 60F05, 60K15; Secondary 60G10, 60G40, 60J27, 60K20

Received: 27.04.1983


 English version:
Mathematics of the USSR-Sbornik, 1986, 54:1, 161–183

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026