RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1986 Volume 131(173), Number 3(11), Pages 385–402 (Mi sm1931)

This article is cited in 2 papers

On the asymptotic behavior of entire Dirichlet series

O. B. Skaskiv, M. N. Sheremeta


Abstract: For entire functions $F$ given by Dirichlet series
$$ F(s)=\sum_{n=0}^\infty a_ne^{s\lambda_n},\qquad0=\lambda_0<\lambda_1<\cdots<\lambda_n\uparrow+\infty\quad(n\to+\infty), $$
absolutely convergent in $\mathbf C$ some results are proved which give best possible, or close to best possible, conditions sufficient for the relation
$$ F(s)=(1+o(1))a_\nu e^{s\lambda_\nu}\qquad(s=\sigma+it) $$
as $\sigma\to+\infty$ outside some set, where $\nu=\nu(\sigma)$ is the central index of the Dirichlet series.
Bibliography: 4 titles.

UDC: 517.535

MSC: Primary 30B50, 30E15; Secondary 30D10

Received: 27.05.1985


 English version:
Mathematics of the USSR-Sbornik, 1988, 59:2, 379–396

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026