RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1986 Volume 131(173), Number 3(11), Pages 309–322 (Mi sm1926)

This article is cited in 4 papers

On absolute completeness of systems of exponentials on a closed interval

I. F. Krasichkov-Ternovskii


Abstract: Let $\Lambda=\{\lambda_i\}$ be a sequence of points in the complex plane, and $M=\{m_i\}$ a sequence of positive numbers. Problem: under what relations between $\Lambda$ and $M$ can any function in $C[a,b]$ be approximated in the uniform norm by finite linear combinations $\sum a_ie^{\lambda_ix}$ of exponentials with the coefficient restriction $|a_i|\leqslant C_fm_i$. Here $C_f$ depends only on $f$.
An exact solution of the problem is given under the assumption that $\big|\frac{\operatorname{Im}\lambda_i}{\operatorname{Re}\lambda_i}\big|\leqslant\text{Const}$.
Bibliography: 26 titles.

UDC: 517.5

MSC: Primary 30B50, 30B60, 41A30; Secondary 30D15

Received: 18.03.1985


 English version:
Mathematics of the USSR-Sbornik, 1988, 59:2, 303–315

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026