RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1987 Volume 133(175), Number 1(5), Pages 103–111 (Mi sm1918)

This article is cited in 1 paper

Zeros of holomorphic functions of finite order in the polydisc

P. L. Polyakov


Abstract: Estimates are proved for the volume of the zero set of a holomorphic function of finite order in the polydisc. These estimates make it possible to solve a problem posed by Stoll: namely, to prove that $\operatorname{ord}M=\min\{\operatorname{ord}f\}$ for an analytic subset $M$ of codimension 1 in the polydisc $D^n$ and holomorphic functions $f$ having $M$ as zero set.
Bibliography: 7 titles.

UDC: 517.5

MSC: 32A22

Received: 01.08.1985 and 25.04.1986


 English version:
Mathematics of the USSR-Sbornik, 1988, 61:1, 103–112

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026