Abstract:
Estimates are proved for the volume of the zero set of a holomorphic function of finite order in the polydisc. These estimates make it possible to solve a problem posed by Stoll: namely, to prove that $\operatorname{ord}M=\min\{\operatorname{ord}f\}$ for an analytic subset $M$ of codimension 1 in the polydisc $D^n$ and holomorphic functions $f$ having $M$ as zero set.
Bibliography: 7 titles.