RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1986 Volume 130(172), Number 4(8), Pages 520–536 (Mi sm1892)

This article is cited in 16 papers

Solvability of a mixed problem for the nonlinear Schrödinger equation

M. V. Vladimirov


Abstract: Existence and uniqueness theorems are established for a generalized solution of a mixed problem for the nonlinear Schrödinger equation in the presence of dissipation in the space $L_\infty(0,T;\overset\circ W{}^1_2(G))$ and $L_\infty(0,T;\overset\circ W{}^1_2(G)\cap W^2_2(G))$.
The method of proving uniqueness of a solution is based on the assumption of the existence and boundedness in $t\in[0,T]$ of the integral of a solution $\int_G\exp(\varkappa|u|^p)\,dx$ for some $\varkappa>0$, where $p$ is the degree of nonlinearity in the equation.
Bibliography: 16 titles.

UDC: 517.956.6

MSC: Primary 35J10, 35D05; Secondary 78A10

Received: 03.07.1985


 English version:
Mathematics of the USSR-Sbornik, 1987, 58:2, 525–540

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026