RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1987 Volume 132(174), Number 3, Pages 322–344 (Mi sm1857)

This article is cited in 5 papers

Asymptotics of a fundamental solution of a parabolic equation as $t\to\infty$

E. F. Lelikova


Abstract: The author analyzes the behavior as $t\to\infty$ of the fundamental solution $G(x, s, t)$ of the Cauchy problem for the equation $v_t-v_{xx}-a(x)v_x-b(x)v=0$ with infinitely differentiable coefficients $a(x)$ and $b(x)$ decreasing as $|x|\to\infty$. For the case when the functions $a(x)$ and $b(x)$ can be expanded as $x\to\pm\infty$ on asymptotic series of the form
\begin{gather*} a(x)=a_1|x|^{-\alpha_1}+\dots +a_i|x|^{-\alpha_i}+\dots , \\ b(x)=b_1|x|^{-\beta_1}+\dots +b_i|x|^{-\beta_i}+\dots , \end{gather*}
where $\alpha_m$, $\beta_m\uparrow\infty$ as $m\to\infty$, $\alpha_1>1$, $\beta_1>2$, she constructs and justifies asymptotic expansion of the fundamental solution $G(x, s, t)$ to within any power of $G(x, s, t)$ uniformly with respect to all $x$ and $s$ in $\mathbf R^1$.
Bibliography: 12 titles.

UDC: 517.95

MSC: Primary 35K15, 35B40; Secondary 41A60

Received: 09.12.1985


 English version:
Mathematics of the USSR-Sbornik, 1988, 60:2, 315–337

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026