RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1986 Volume 130(172), Number 1(5), Pages 86–104 (Mi sm1851)

This article is cited in 29 papers

Invertibility of nonautonomous functional-differential operators

V. E. Slyusarchuk


Abstract: Let $C^{(m)}$ be the Banach space of continuous and bounded functions on $R$ that take values in a finite-dimensional Banach space $E$ and have derivatives up to and including order $m$. The norm in $C^{(m)}$ is given by $\|x\|_{C^{(m)}}=\sup_{t\in R,k=\overline{0,m}}\big\|\frac{d^kx(t)}{dt^k}\big\|_E$. Let $C^{(m)}_\omega$ be the Banach space of $\omega$-periodic functions with the same norm as $C^{(m)}$.
Theorem. {\it Suppose
$1)\ A$ is a $c$-completely continuous element of the space $L(C^{(m)},C^{(0)})$ $(m\geqslant0);$
$2)\ \operatorname{Ker}\bigl(\frac{d^m}{dt^m}+A\bigr)=0;$
$3)$ there exists a completely continuous operator $A_\omega\in L(C_\omega^{(m)},C_\omega^{(0)})$ $(\omega>0)$ for which
$$ \lim_{\omega\to+\infty}\sup_{\|x\|_{C_\omega^{(m)}}=1,|t|<T}\|(Ax)(t)-(A_\omega x)(t)\|_E=0\qquad\forall\,T>0 $$
and
$$ \varlimsup_{\omega\to+\infty}\inf_{\|x\|_{C_\omega^{(m)}}=1}\max_{t\in[-\frac\omega2,\frac\omega2]}\bigg\|\frac{d^mx(t)}{dt^m}+(A_\omega x)(t)\bigg\|_E>0. $$

Then the operator $\frac{d^m}{dt^m}+A$ has a $c$-continuous inverse.}
Using this theorem the invertibility of a large class of operators is studied, which class contains in particular Poisson stable operators.
Bibliography: 22 titles.

UDC: 517.9

MSC: 34K30, 47E05

Received: 28.03.1985


 English version:
Mathematics of the USSR-Sbornik, 1987, 58:1, 83–100

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026