RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1986 Volume 129(171), Number 4, Pages 514–534 (Mi sm1843)

This article is cited in 48 papers

On the integrability of invariant Hamiltonian systems with homogeneous configuration spaces

I. V. Mykytyuk


Abstract: All homogeneous spaces $G/K$ ($G$ is a semisimple complex (compact) Lie group, $K$ a reductive subgroup) are enumerated for which arbitrary Hamiltonian flows on $T^*(G/K)$ with $G$-invariant Hamiltonians are integrable in the class of Noether integrals. It is proved that only for these spaces $G/K$ does the quasiregular representation of $G$ in the space of regular functions of the algebraic variety $G/K$ have a simple spectrum.
Bibliography: 21 titles.

UDC: 512.5+517.938

MSC: Primary 58F07; Secondary 17B99

Received: 07.02.1985


 English version:
Mathematics of the USSR-Sbornik, 1987, 57:2, 527–546

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026