RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1988 Volume 137(179), Number 4(12), Pages 500–525 (Mi sm1799)

This article is cited in 19 papers

Relative asymptotics for polynomials orthogonal on the real axis

G. L. Lopes


Abstract: Given a positive Borel measure $\rho$ on the real line $\mathbf R$ and a function $g$ on $\mathbf R$, the main purpose of the paper is to prove (under certain assumptions on $\rho$) relative asymptotic formulas of the type
$$ \frac{h_n(gd\rho,z)}{h_n(d\rho,z)}\underset{n\to\infty}\rightrightarrows S(g,\Omega;z),\qquad z\in\Omega, $$
where $\Omega=\{z:\operatorname{Im}z>0\}$, $S(g,\Omega;z)$ is Szegö's function corresponding to $\Omega$ and the function $g$, $h_n(gd\rho,z)$ and $h_n(d\rho,z)$ are polynomials orthonormal relative to the measures $gd\rho$ and $d\rho$ respectively.
Bibliography: 15 titles.

UDC: 517.5

MSC: Primary 33A65; Secondary 30E10

Received: 29.12.1987


 English version:
Mathematics of the USSR-Sbornik, 1990, 65:2, 505–529

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026