RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1987 Volume 132(174), Number 2, Pages 275–288 (Mi sm1780)

This article is cited in 13 papers

Unimprovability of estimates of Hölder constants for solutions of linear elliptic equations with measurable coefficients

M. V. Safonov


Abstract: The author considers the validity of an estimate in the norm of the Hölder spaces $C^\beta$ for the solutions of linear elliptic equations $a_{ij}u_{x_ix_j}=0$, where $\nu|l|^2\leqslant a_{ij}l_il_j\leqslant\nu^{-1}|l|^2$ for all $l=(l_1,\dots,l_n)\in E_n$ ($n\geqslant2$, $\nu=\mathrm{const}>0$). This estimate does not depend on the smoothness of the coefficients $a_{ij}=a_{ij}(x)$. It is known (RZh. Mat., 1980, 6Á433) that such an estimate holds for sufficiently small exponents $\beta\in(0,1)$ depending on $n$ and $\nu$. In this paper it is proved that this dependence is essential: for every $\beta_0\in(0,1)$ one can exhibit a constant $\nu\in(0,1)$ and construct a sequence in $E_3$ of elliptic equations, of the indicated form with smooth coefficients, whose solutions converge uniformly in the unit ball to a function that does not belong to $C^{\beta_0}$.
Bibliography: 5 titles.

UDC: 517.9

MSC: 35J15, 35B45

Received: 17.09.1985


 English version:
Mathematics of the USSR-Sbornik, 1988, 60:1, 269–281

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026