RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1996 Volume 187, Number 12, Pages 3–20 (Mi sm176)

This article is cited in 5 papers

Number of limit cycles of the quotient system of the $n$-dimensional Fuller problem

V. F. Borisov

State Academy of Consumer Services

Abstract: The number of limit cycles of the quotient system of the $n$-dimensional Fuller problem (that is, the number of one-parameter families of self-similar solutions of the equation $y^{(2n)}=(-1)^{n+1}\operatorname {sgn}y$) is proved to be equal to $[n/2]$.

UDC: 517.977

MSC: Primary 49B10, 34C05; Secondary 93C15

Received: 29.11.1995

DOI: 10.4213/sm176


 English version:
Sbornik: Mathematics, 1996, 187:12, 1737–1753

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026