RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1988 Volume 136(178), Number 2(6), Pages 260–273 (Mi sm1740)

On sufficient sets in spaces of entire functions of several variables

A. B. Sekerin


Abstract: The main result is
Theorem 1. {\it Let $D$ be a bounded convex domain in $\mathbf C^n,$ $n\geqslant2,$ with $0\in D$. Let $H(z)=\max_{\lambda\in\overline D}\mathbf{Re}\langle\lambda,z\rangle$. Let $L(z)$ be an entire function of exponential type whose zero set $S$ is the union of planes $P_m=\{z:\langle a_m,z\rangle=c_m\},$ $m\in\mathbf N,$ $|a_m|=1$. Suppose the following conditions hold}:
a) {\it there exist constants $c,$ $r_0,$ $d_0,$ $\gamma\in(0,1),$ such that the estimate
$$ \left|\ln|L(z)|-H(z)\right|\leqslant c\left|\ln d\right||z|^{1-\gamma} $$
holds if the point $z\in\mathbf C^n,$ satisfies $|z|\geqslant r_0,$ $\inf_{w\in S}|z-w|=d(z,S)\geqslant d>0,$ $d<d_0$};
b) {\it for every $m$ the restriction of the entire function $(\langle a_m,z\rangle-c_m)^{-1}L(z)$ to the plane $P_m$ is not identically zero};
c) {\it there exist constants $c$ and $N$ such that for $m\ne k$ either $d(P_m,P_k)\geqslant c|c_m|^{-N}|c_k|^{-N}$ or $1-|\langle a_m,\overline a_k\rangle|\geqslant c|c_m|^{-N}|c_k|^{-N}$.
Then every analytic function $f(z)$ in the domain $D$ can be represented by a series
$$ f(z)=\sum_{m=1}^\infty\int_{P_m}\exp\langle\lambda,z\rangle\,d\mu_m(\lambda) $$
converging in the topology of $H(D)$.}
Bibliography: 11 titles.

UDC: 517.537

MSC: Primary 32A15; Secondary 32A30, 30A50

Received: 27.06.1987


 English version:
Mathematics of the USSR-Sbornik, 1989, 64:1, 263–276

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026