RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1987 Volume 132(174), Number 1, Pages 64–72 (Mi sm1714)

This article is cited in 1 paper

Conjugacy separability of some factor groups of a free product

Yu. A. Kolmakov


Abstract: Groups of the form $F/C^{(n)}$ are studied, where $F$ is the free product of groups $B_i$, $i\in I$, and $C^{(n)}$ is the $n$th term of the derived series of the Cartesian subgroup of this product. It is proved that if every $B_i$ is conjugacy separable, residually finite with respect to occurrence in cyclic subgroups, and torsion-free, then the groups $F/C^{(n)}$ are conjugacy separable.
Bibliography: 8 titles

UDC: 512

MSC: 20E06, 20E26

Received: 04.07.1985


 English version:
Mathematics of the USSR-Sbornik, 1988, 60:1, 67–75

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026