RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1988 Volume 135(177), Number 1, Pages 3–11 (Mi sm1683)

This article is cited in 2 papers

A limit theorem for the Riemann zeta-function close to the critical line

A. P. Laurincikas


Abstract: It is shown that as $T\to\infty$ the distribution function
$$ \frac1T\operatorname{mes}\{t\in[0,T],\ |\zeta(\sigma_T+it)|^\frac{1}{\sqrt{2^{-1}\ln\ln T}}<x\} $$
approaches the distribution function of the logarithmic normal distribution. Here $\operatorname{mes}\{A\}$ is the Lebesgue measure of the set $A$, and
$$ \sigma_T=\frac12+\frac{\sqrt{\ln\ln T}\psi(T)}{\ln T}, $$
where $\psi(T)\to\infty$ and $\ln\psi(T)=o(\ln\ln T)$ as $T\to\infty$.
Bibliography: 11 titles.

UDC: 519.2+511

MSC: Primary 11M06; Secondary 11N64, 11K36

Received: 01.08.1986


 English version:
Mathematics of the USSR-Sbornik, 1989, 63:1, 1–9

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026