RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1989 Volume 180, Number 12, Pages 1709–1723 (Mi sm1682)

This article is cited in 19 papers

On the smoothness of the solutions of multidimensional weakly singular integral equations

G. M. Vainikko


Abstract: Estimates are given for the derivatives of solutions of the integral equation
$$ u(x)=\int_GK(x,y)u(y)\,dy+f(x), \qquad x\in G, $$
where $G\subset R^n$ is an open bounded set, the kernel $K(x,y)$ has continuous derivatives up to order $m$ on $(G\times G)\setminus\{x=y\}$, and there exists a $\nu(-\infty<\nu<n)$ such that
\begin{gather*} \biggl|\biggl(\frac\partial{\partial x_1}\biggr)^{\alpha_1}\dotsb\biggl(\frac\partial{\partial x_n}\biggr)^{\alpha_n}\biggl(\frac\partial{\partial x_1}+\frac\partial{\partial y_1}\biggr)^{\beta_1}\dotsb\biggl(\frac\partial{\partial x_n}+\frac\partial{\partial y_n}\biggr)^{\beta_n}K(x,y)\biggr| \\ \leqslant c \begin{cases} 1+|x-y|^{-\nu-|\alpha|},&\nu+|\alpha|\ne0, \\ 1+|\ln|x-y||,&\nu+|\alpha|=0, \end{cases} \qquad |\alpha|+|\beta|\leqslant m. \end{gather*}
Two weighted function classes are distinguished such that if the free term $f$ is in one of them, so is the solution. The main qualitative consequence is that the tangential derivatives of a solution behave essentially better than the normal derivatives when $f$ is smooth.
Figures: 4.
Bibliography: 13 titles.

UDC: 517.96

MSC: Primary 45E99; Secondary 45B05, 45M99, 45L10

Received: 27.06.1987


 English version:
Mathematics of the USSR-Sbornik, 1991, 68:2, 585–600

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026