RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 1989 Volume 180, Number 11, Pages 1524–1547 (Mi sm1674)

This article is cited in 3 papers

Multiplier operators connected with the Cauchy problem for the wave equation. Difference regularization

B. S. Rubin


Abstract: For the operator $M_{t^\alpha}$, $t>0$, $\alpha+n/2\ne0,-1,-2,\dots$, defined on Fourier transforms of Schwartz functions $\omega\in S(\mathbf R^n)$ by the relation
$$ F[M_{t^\alpha}\omega](\xi)=m_\alpha(t|\xi|)F[\omega](\xi),\quad m_\alpha(\rho)=\Gamma\biggl(\frac n2+\alpha\biggr)\biggl(\frac\rho2\biggr)^{1-n/2-\alpha}J_{n/2+\alpha-1}(\rho), $$
the question of extension to a bounded linear operator $\mathscr M_{t^\alpha}\colon L_p^r\to L_q^s$ is considered, where $L_p^r$ and $L_q^s$ are Lebesgue spaces of Bessel potentials, $1\leqslant p\leqslant\infty$, $1\leqslant q\leqslant\infty$, and $-\infty<r<\infty$, $-\infty<s<\infty$. Sharp conditions are obtained under which such an extension is possible. An explicit representation of $\mathscr M_{t^\alpha}f$ is given for $\alpha<0$ and $f\in L_p^r$, $1\leqslant p<\infty$, $r\geqslant0$, in the form of a difference hypersingular integral converging in the $L_q^s$-norm and almost everywhere. For the operator $M_{t^{\alpha,\beta}}$ generated by the Fourier multiplier
$$ \mu_{t,\alpha,\beta}(\xi)=(1+|\xi|^2)^{-\beta/2}m_\alpha(t|\xi|), $$
an assertion is obtained regarding the convergence of $M_{t^{\alpha,\beta}}\varphi$, $\varphi\in L_p$, as $t\to0$ in the $L_q^s$-norm and almost everywhere which generalizes a familiar result of Stein corresponding to the case $\beta=0$. The results are applied to the investigation of the Cauchy problem for the wave equation in the scale of spaces $L_p^r$.
Figures: 4.
Bibliography: 43 titles.

UDC: 517.983

MSC: 35L05, 35L15, 42B15

Received: 27.04.1987


 English version:
Mathematics of the USSR-Sbornik, 1991, 68:2, 391–416

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026